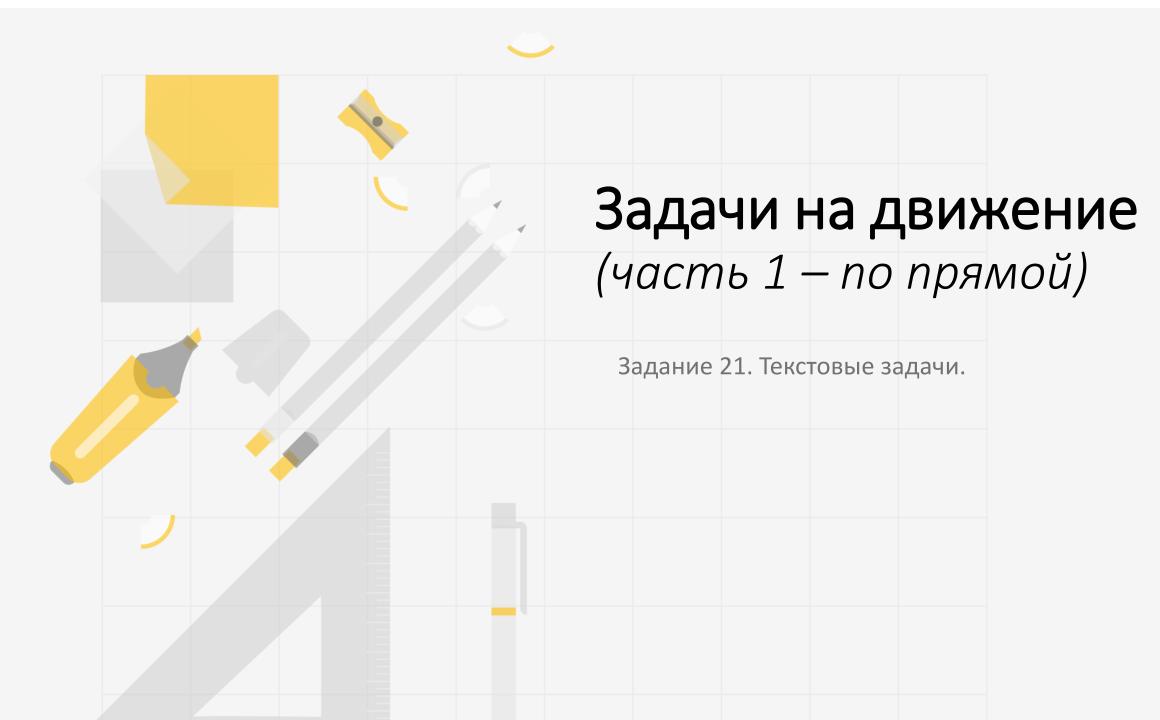
ОГЭ по математике Задача 21 (вторая часть)

Подготовила:


Нагацкая Диана Андреевна

Виды текстовых задач №21

1. Движение

2. Задачи на работу

3. Смеси, сплавы, проценты

<u>Задача 1.</u> Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 3,5 км от места отправления. Один идёт со скоростью 2,7 км/ч, а другой — со скоростью 3,6 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?

	v (км/ч)	t (4)	S (км)
1	2, 7 км/ч	<u>3,5 − х</u> ч	3,5 – х км
2	3,6 км/ч	$\frac{3.5 + x}{3.6}$ 4	3,5 + х км

Пусть x км — расстояние от опушки до места встречи, **значит** расстояние, которое прошел первый до встречи (S_1) = 3,5 — x км, а расстояние, которое прошел второй до встречи (S_2) = 3,5 + x км.

Тогда время первого до встречи $(t_1) = \frac{3,5-x}{2,7}$ ч, а время второго до встречи $(t_2) = \frac{3,5+x}{3,6}$ ч.

$$t_1 = t_2$$

<u>Задача 2.</u> Дорога между пунктами A и B состоит из подъёма и спуска, а её длина равна 19 км. Турист прошёл путь из A в B за 5 часов, из которых спуск занял 4 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 1 км/ч?

	v (км/ч)	t (4)	S (км)
1	<i>х</i> км/ч	4 ч	4х км
2	x-1 км/ч	1 ч	(<i>x</i> − 1)· 1 км

Пусть x км/ч — скорость на спуске (v_1) , значит скорость на подъеме $(v_2) = x - 1$ км/ч.

Тогда расстояние на подъёме $(S_1) = 4x$ км, а расстояние на спуске $(S_2) = (x-1)$ км.

$$S_1 + S_2 = 19$$

Задача 3. Два автомобиля отправляются в 340-километровый пробег. Первый едет со скоростью на 17 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.

	v (км/ч)	t (4)	S (км)
1			
2			

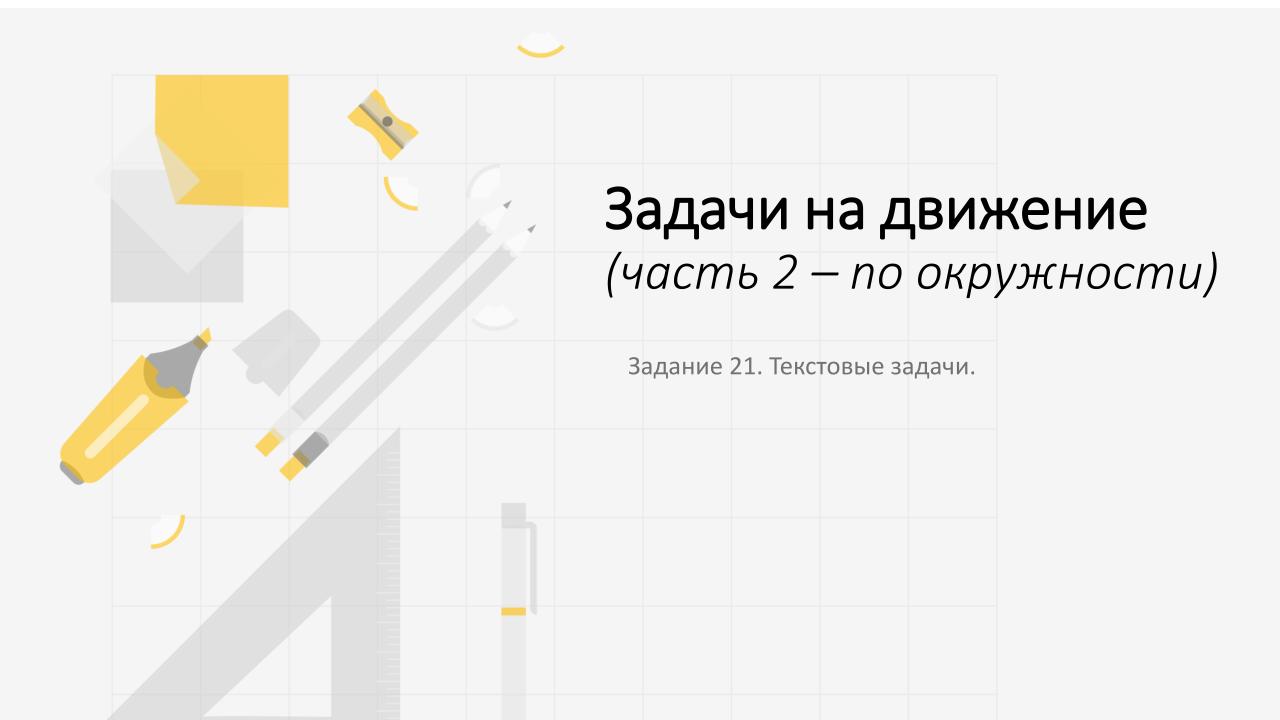
Пусть х км/ч — скорость второго автомобилиста (v_2) , значит скорость первого $(v_1) = x + 17$ км/ч.

Тогда время первого автомобилиста $(t_1) = \frac{340}{x+17}$ ч, a время второго автомобилиста $(t_2) = \frac{340}{x}$ ч.

$$t_1 + 1 = t_2$$

Задача 4. Первую половину трассы автомобиль проехал со скоростью 56 км/ч, а вторую — со скоростью 84 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

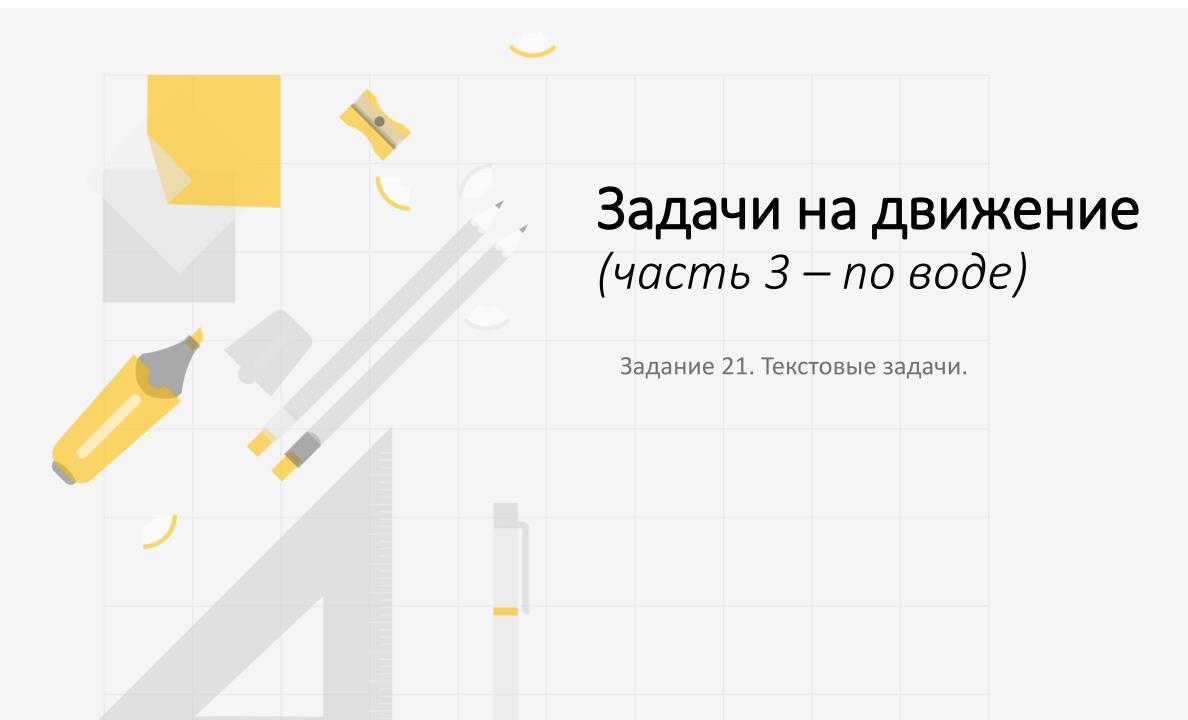
	v (км/ч)	t (4)	S (км)
1			
2			


Пусть S км — общее расстояние, **значит** первая и вторая половины трассы $=\frac{S}{2}$ км.

Тогда время на первой половине трассы $(t_1) = \frac{S}{2 \cdot 56}$ ч, а время на второй половине трассы $(t_2) = \frac{S}{2 \cdot 84}$ ч.

$$V$$
 сред. = $\frac{S \text{ общее}}{t \text{ общее}}$

Задача 5. Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо придорожного столба за 30 секунд. Найдите длину поезда в метрах.

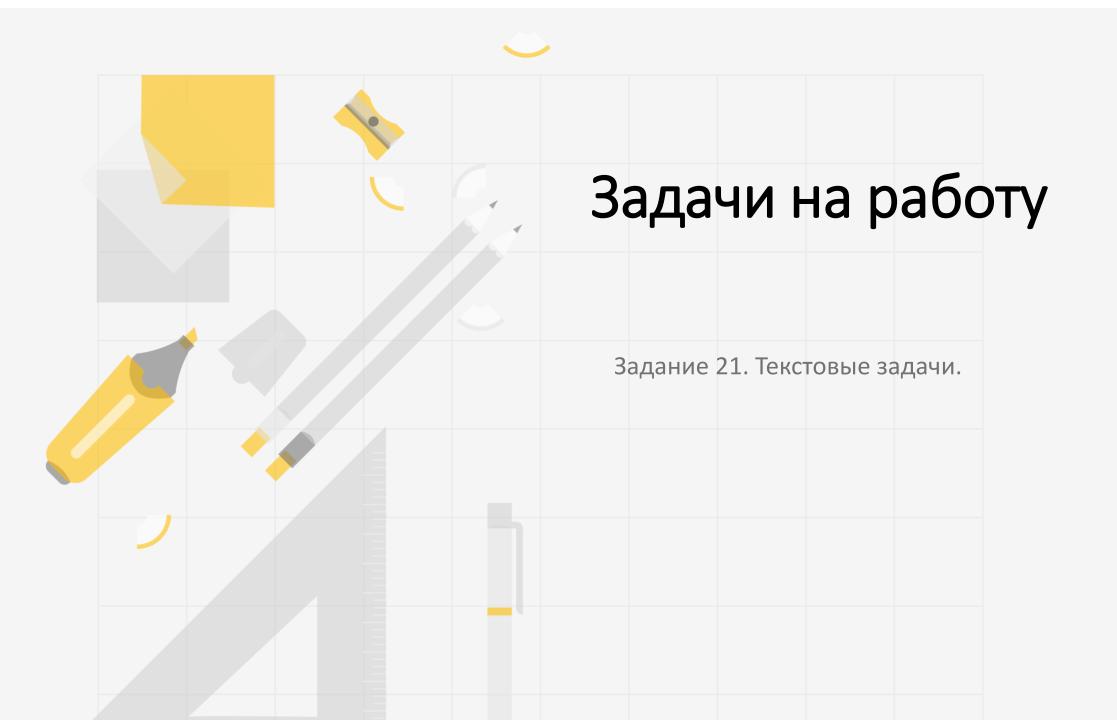

	v (км/ч)	t (4)	S (км)
1			

<u>Задача 6.</u> Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.

	v (км/ч)	t (4)	S (KM)
1			
2			

Пусть		
значит		
Тогда		
a		
	Cocmaeum vnaeueuue u neuum ezo:	

Задача 8. Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.


	v (км/ч)	t (4)	S (км)
По теч.			
Пр. теч.			
Собств.			
Река			

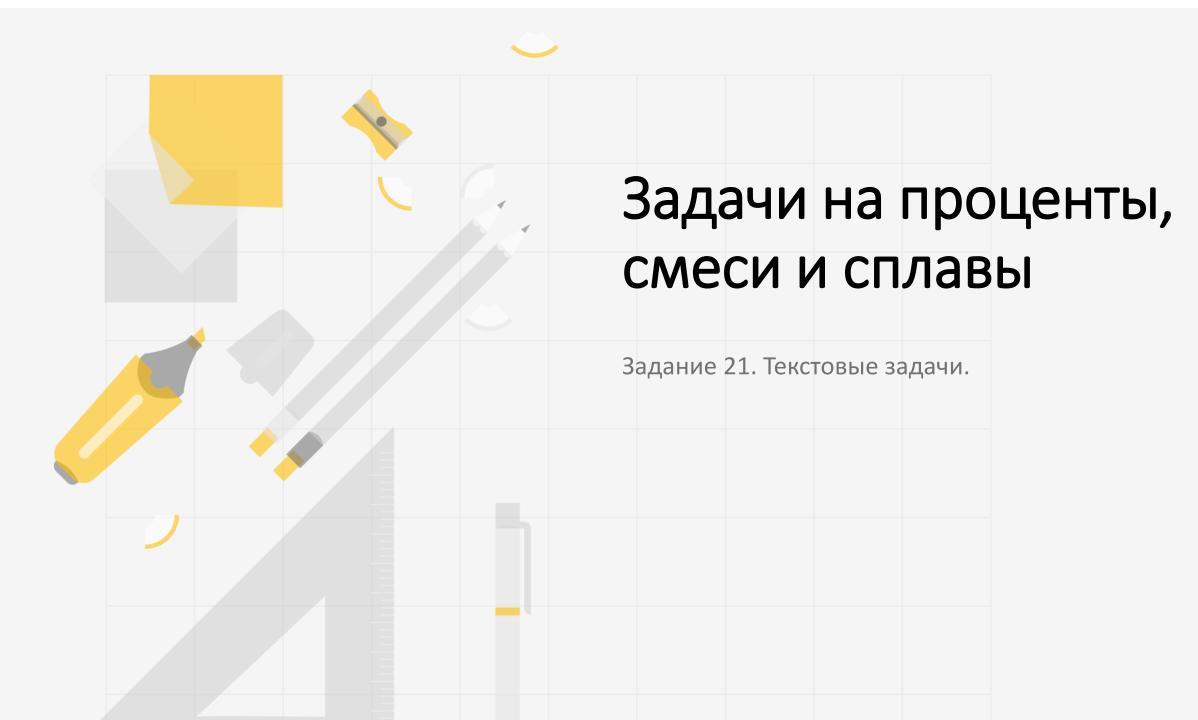
Пусть	
значит	· · · · · · · · · · · · · · · · · · ·
Тогда	
a	

<u>Задача 9.</u> Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 30 минут, лодка отправилась назад и вернулась в пункт А в 18:00. Определите (в км/ч) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч.

	v (км/ч)	t (4)	S (км)
По теч.			
Пр. теч.			
Собств.			
Река			

Пусть	 ,
значит	
Тогда	 ,
a	 •

Задача 10. На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?


	Произв. (дет/час)	t (4)	Работа (дет)
1			
2			

Пусть	 		
значит	 	 	
Тогда	 	 	
a			

Задача 11. Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 1 минуту дольше, чем вторая труба?

	Произв. (л/мин)	t (мин)	Работа (л)
1			
2			

Пусть			
значит	,	 	
Тогда			
a			
<u> </u>		 	

Задача 12. Свежие фрукты содержат 80% воды, а высушенные — 4%. Сколько требуется свежих фруктов для приготовления 2 кг высушенных фруктов?

	Вода	Сухое вещество	Масса
1			
2			

Задача 13. Имеются два сосуда, содержащие 20 и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 41% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 43% кислоты. Сколько килограммов кислоты содержится в первом растворе?